{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# For tips on running notebooks in Google Colab, see\n# https://codelin.vip/beginner/colab\n%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Deploying PyTorch in Python via a REST API with Flask\n=====================================================\n\n**Author**: [Avinash Sajjanshetty](https://avi.im)\n\nIn this tutorial, we will deploy a PyTorch model using Flask and expose\na REST API for model inference. In particular, we will deploy a\npretrained DenseNet 121 model which detects the image.\n\n```{=html}\n
All the code used here is released under MIT license and is available on Github.
\n```\n```{=html}\n