{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# For tips on running notebooks in Google Colab, see\n# https://codelin.vip/beginner/colab\n%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Introduction](introyt1_tutorial.html) \\|\\|\n[Tensors](tensors_deeper_tutorial.html) \\|\\|\n[Autograd](autogradyt_tutorial.html) \\|\\| [Building\nModels](modelsyt_tutorial.html) \\|\\| [TensorBoard\nSupport](tensorboardyt_tutorial.html) \\|\\| [Training\nModels](trainingyt.html) \\|\\| [Model Understanding](captumyt.html)\n\nIntroduction to PyTorch - YouTube Series\n========================================\n\nAuthors: [Brad Heintz](https://github.com/fbbradheintz)\n\nThis tutorial follows along with the [PyTorch Beginner\nSeries](https://www.youtube.com/playlist?list=PL_lsbAsL_o2CTlGHgMxNrKhzP97BaG9ZN)\non YouTube.\n\n[This tutorial assumes a basic familiarity with Python and Deep Learning\nconcepts.]{.title-ref}\n\nRunning the Tutorial Code\n-------------------------\n\nYou can run this tutorial in a couple of ways:\n\n- **On the cloud**: This is the easiest way to get started! Each\n section has a Colab link at the top, which opens a notebook with the\n code in a fully-hosted environment. Pro tip: Use Colab with a GPU\n runtime to speed up operations *Runtime \\> Change runtime type \\>\n GPU*\n- **Locally**: This option requires you to set up PyTorch and\n torchvision on your local machine ([installation\n instructions](https://pytorch.org/get-started/locally/)). Download\n the notebook or copy the code into your favorite IDE.\n\n::: {.toctree maxdepth=\"2\" hidden=\"\"}\nintroyt1\\_tutorial tensors\\_deeper\\_tutorial autogradyt\\_tutorial\nmodelsyt\\_tutorial tensorboardyt\\_tutorial trainingyt captumyt\n:::\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 0 }